Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

You-Fu Zhou, Ying Xu, Da-Qiang Yuan and Mao-Chun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: hmc@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.025 wR factor = 0.065 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The chain structure of *catena*-poly-[[(2,2'-bipyridine)cadmium(II)]di-μ-chloro]

In the title compound, $[CdCl_2(C_{10}H_8N_2)]_n$, the Cd^{II} ion is sixcoordinate and has a distorted octahedral geometry. The basal plane is formed by the two N atoms of the 2,2'-bipyridine ligand [Cd-N 2.352 (3) Å] and two Cl atoms [Cd-Cl 2.5519 (8) Å]. The apical sites are occupied by Cl atoms from neighbouring monomeric units [Cd-Cl 2.7517 (9) Å]. All the Cl atoms act as bridging ligands. The adjacent Cd coordination polyhedra share Cl-Cl edges, thus giving rise to a polymeric chain along the *c* axis. The Cd^{II} ion is positioned on a twofold axis. Received 28 July 2003 Accepted 21 August 2003 Online 30 August 2003

Comment

Polynuclear d^{10} metal complexes have been found to exhibit intriguing structural and photoluminescent properties. Chloride-bridged cadmium(II) polymeric complexes are of considerable interest, because they may act as photoactive materials. Structural studies of chloride-bridged Cd^{II} polymeric complexes are common (Bell *et al.*, 1982; Griffith *et al.*, 1982; Bigoli *et al.*, 1983; Huang *et al.*, 1998). However, Cd^{II} polymeric complexes with a CdCl₂N₂ coordination polydedron have rarely been reported (Bonomo *et al.*, 1989). We have introduced 2,2'-bipyridine as a terminal ligand which favours crystal growth of the product. Through a hydrothermal reaction, we have successfully synthesized the title crystalline chloride-bridged Cd complex [CdCl₂(bpy)]_n (bpy is 2,2'-bipyridine), (I).

The structure of the title compound, (I) (Fig. 1), forms onedimensional chains extending in the **c** direction (Fig. 2). It is isostructural with an analogous bromide-bridged Cu^{II} complex (Garland *et al.*, 1988). The Cd^{II} ion is positioned on a twofold axis, so the primarily monomeric unit is generated by symmetry (Fig. 1, Table 1).

The Cd^{II} ion in (I) is coordinated by two N atoms from one chelating bpy ligand and four Cl atoms, to furnish a distorted coordination octahedron, as depicted in Fig. 2. The basal plane is formed by the two *cis* N atoms from the bpy ligand [Cd-Ncis Cl atoms [Cd-Cl 2.5519 (8) Å]. The axial positions of the octahedron are occupied by Cl atoms from neighbouring

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Figure 2

A view of the one-dimensional chain of chloride-bridged Cd^{II} ions in (I), along the *a* axis.

monomeric units $[Cd-Cl^i 2.7517 (9) Å]$ (symmetry code in Table 1). Adjacent Cd coordination octahedra share Cl-Cl edges, thus forming a one-dimensional chain along the c axis. All bpy ligands are coordinated in a chelating mode and they lie on alternate sides of the chain. The Cd···Cd distance between neighbouring Cd^{II} ions in the chain is 3.931 (9) Å, which is shorter than that of the Cu^{II} isomorph [3.974 (1) Å]. The closest distance between the pyridyl rings of two bpy ligands in neighbouring chains is 3.342 (3) Å, indicating the existence of π - π interactions between the adjacent chains. Thus the chains are connected to each other via π - π interactions to form two-dimensional layers parallel to the bc plane.

The packing of (I) (Fig. 3) is determined by van der Waals interactions and possible hydrogen bonds involving the C atoms of the bpy ligand and Cl atoms of the same $[C4-H4A\cdots Cl^{iv} 3.534 (5) \text{ Å}]$ or adjacent $[C2-H2A\cdots Cl^{v} 3.751 (5) \text{ Å}]$ chains [symmetry codes: (iv) 1 - x, 1 + y, $\frac{3}{2} - z$; (v) $x - \frac{1}{2}, \frac{1}{2} + y, z - 1$].

A packing diagram for (I), viewed down the c axis. Dashed lines indicate hydrogen bonds.

Experimental

The hydrothermal reaction of cadmium chloride (0.06 g, 0.26 mmol), 2,2'-bipyridine (0.04 g, 0.25 mmol) and water (15.0 ml) was carried out at 433 K for 4 d. After cooling to room temperature at 5 K h⁻¹, the crystalline complex, (I), was isolated in 63% yield (based on Cd). IR (KBr, ν , cm⁻¹): 3417, 1604, 1558, 1439, 1375, 1171, 1016, 771, 735. Elemental analysis, calculated for C₁₀H₈N₂CdCl₂: C 35.38, H 2.38, N 8.25%; found: C 35.16, H 2.17, N 8.23%.

Crystal data

$CdCl_2(C_{10}H_8N_2)]$	$D_x = 2.058 \text{ Mg m}^{-3}$
$M_r = 339.49$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 35
i = 17.5517(6)Å	reflections
b = 9.3166 (6) Å	$\theta = 2.5 - 25.0^{\circ}$
c = 7.1710 (4) Å	$\mu = 2.44 \text{ mm}^{-1}$
$\beta = 110.860 \ (2)^{\circ}$	T = 293 (2) K
$V = 1095.8 (1) \text{ Å}^3$	Prism, colourless
Z = 4	$0.56 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Siemens SMART CCD area-	954 independent reflections
detector diffractometer	885 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 25^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 10$
$T_{\min} = 0.494, \ T_{\max} = 0.613$	$k = -11 \rightarrow 6$
1693 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.065$ S = 1.12954 reflections 70 parameters H-atom parameters constrained

	•	
metal-	organic	napers
metui	o guine	pupers

Table 1	
Selected geometric parameters (Å, °).	

Cd-N	2.352 (3)	C2-C3	1.368 (7)
Cd-Cl	2.5519 (8)	C3-C4	1.373 (6)
Cd-Cl ⁱ	2.7517 (9)	C4-C5	1.390 (5)
C1-N	1.342 (4)	C5-N	1.338 (4)
C1-C2	1.381 (6)	C5-C5 ⁱⁱ	1.502 (7)
N ⁱⁱ -Cd-N	69.93 (14)	Cl-Cd-Cl ⁱ	84.40 (3)
N ⁱⁱ -Cd-Cl ⁱⁱ	160.22 (7)	Cl ⁱ -Cd-Cl ⁱⁱⁱ	178.73 (4)
N-Cd-Cl ⁱⁱ	94.29 (7)	Cd-Cl-Cd ⁱ	95.60 (3)
N-Cd-Cl	160.22 (7)	N-C1-C2	122.6 (4)
Cl ⁱⁱ -Cd-Cl	103.40 (4)	C3-C2-C1	118.6 (4)
N ⁱⁱ -Cd-Cl ⁱ	95.66 (7)	C2-C3-C4	119.7 (4)
N-Cd-Cl ⁱ	85.39 (7)	C3-C4-C5	118.9 (4)
Cl ⁱ -Cd-Cl ⁱⁱ	94.81 (3)	N - C5 - C4	121.7 (4)

Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, y, $\frac{3}{2} - z$; (iii) x, 1 - y, $z - \frac{1}{2}$.

All H atoms were located in a difference Fourier map but were introduced in idealized positions (C–H = 0.93 Å) and treated as riding, with displacement parameters fixed at 120% of those of their parent atoms. The maximum residual electron-density peak is 0.84 Å from the Cd atom.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1994); program(s) used to solve structure: *SHELXTL* (Siemens, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XPREP* (Bruker,

1997); software used to prepare material for publication: *SHELXL*97 (Sheldrick, 1997).

This work was supported by grants from the National Natural Science Foundation of China, the Chinese Academy of Sciences and the Natural Science Foundation of Fujian Province.

References

- Bell, N. A., Dee, T. D., Goldstein, M. & Nowell, I. W. (1982). Inorg. Chim. Acta, 65, L87–L89.
- Bigoli, F., Lanfranchi, M., Leporati, E. & Pellinghelli, M. A. (1983). Acta Cryst. C39, 1333–1335.
- Bonomo, R., Bottino, F., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1989). *Inorg. Chem.* 28, 4593–4598.
- Bruker (1997). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Garland, M. T., Grandjean, D., Spodine, E., Atria, A. M. & Manzur, J. (1988). Acta Cryst. C44, 1209–1212.
- Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1982). Acta Cryst. B38, 942– 944.
- Huang, C. F., Wei, H. H., Lee, G. H. & Wang, Y. (1998). Inorg. Chim. Acta, 279, 233–237.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL (Release 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART*. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.